Towards a database of isogeny graphs

Enric Florit - efz1005@gmail.com
Universitat de Barcelona
Gerard Finol - gerardfinol@gmail.com
Universitat Rovira i Virgili

The isogeny graphs $\Gamma_1(\ell; p)$

• An elliptic curve E over a finite field \mathbb{F}_q has equation $E: y^2 = x^3 + Ax + B$. The j-invariant

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

gives the isomorphism class of the curve. The curve is **supersingular** if its **endomorphism** ring is an order in a **quaternion algebra**.

• An **isogeny** of degree ℓ is a finite morphism of elliptic curves

$$\varphi \colon E \to E'$$
 such that $|\ker \varphi| = \ell$.

• The supersingular isogeny graph $\Gamma_1(\ell; p)$ is the graph of supersingular j-invariants over $\overline{\mathbb{F}}_p$ and degree- ℓ isogenies between them. It is an $(\ell+1)$ -regular Ramanujan graph.

 $\Gamma_1(2; 863)$ and $\Gamma_1(3; 863)$ superimposed.

We are building an open library of supersingular isogeny graphs of elliptic curves using serverless computing

Each step is computed in parallel

BYM

Bringing Young Mathematicians Together

Visit the website: isogenies.enricflorit.com

Computing isogenies

For each prime ℓ , the ℓ th modular polynomial $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ satisfies $\Phi_{\ell}(j(E),j(E'))=0 \iff$ there is a degree- ℓ isogeny from E to E'. The roots of $\Phi_{\ell}(j,Y)$ are the **neighbors** of j.

Serverless computing with Lithops

Using lithops we can run hundreds of parallel distributed threads to compute graphs.

Histogram of the computation of $\Gamma_1(11; 4010173)$, overall time of 458 seconds.

Graph diameters

The diameter of $\Gamma_1(\ell; p)$ grows as $\log p$, as predicted by the Ramanujan property.

Main references

- [1] S. Arpin et al., "Adventures in Supersingularland", arXiv preprint arXiv:1909.07779 2019.
- [2] J. Sampe et al., "Towards Multicloud Access Transparency in Serverless Computing", *IEEE Software* **2020**, DOI 10.1109/MS.2020.3029994.